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Abstract. Airborne multispectral and hyperspectral imaging can be used to detect potentially
diseased trees rapidly over a large area using unique spectral signatures. Ground inspection and
management can be focused on these detected zones, rather than an entire grove, making it less
labor-intensive and time-consuming. We propose a method to detect the areas of citrus groves
infected with citrus greening disease [Huanglongbing (HLB)] using airborne hyperspectral and
multispectral imaging. This would prevent further spread of infection with efficient management
plans of infected areas. Two sets of hyperspectral images were acquired in 2007 and 2009, from
different citrus groves in Florida. Multispectral images were acquired only in 2009. A compre-
hensive ground truthing based on ground measurements and visual check of the citrus trees was
used for validating the results using 2007 images. In 2009, a more accurate polymerase chain
reaction test for selected trees from ground truthing was carried out. With a handheld spectro-
meter, ground spectral measurements were obtained along with their degrees of infection. A
hyperspectral imaging software (ENVI, ITT VIS) was used for the analysis. HLB infected
areas were identified using image-derived spectral library, mixture tuned matched filtering
(MTMF), spectral angle mapping (SAM), and linear spectral unmixing. The accuracy of the
MTMF method was greater than the other methods. The accuracy of SAM using multispectral
images (87%) was comparable to the results of the MTMF and also yielded higher accuracy
when compared to SAM analysis on hyperspectral images. A possible inaccurate ground truthing
for the grove in 2007 generated more false positives. © 2012 Society of Photo-Optical Instrumenta-
tion Engineers (SPIE). [DOI: 10.1117/1.JRS.6.063542]
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1 Introduction

Citrus greening, also called Huanglongbing (HLB) or yellow dragon disease, is thought to have
originated from China in the early 1900s. The disease is primarily spread by two species of
psyllid insects. The disease in Florida is caused by a bacterium, Candidatus Liberibacter asia-
ticus,1 that is transmitted by a tiny insect, the Asian citrus psyllid (Diaphorina citri), which
thrives on young citrus leaves. The Asian citrus psyllid has been present in Florida since
1998.2 There are three strains of the bacteria: an Asian version, an African version, and an
American strain discovered in Brazil. The Asian strain, Candidatus Liberibacter asiaticus,
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was found in Florida in early September 2005. The bacteria itself is not harmful to humans, but
the disease has harmed trees in Asia, Africa, the Arabian Peninsula, and Brazil.3

HLB is one of the world’s most destructive and devastating citrus diseases. The HLB infected
trees die within three to five years and produce fruits which are unmarketable once the disease
obstructs the flow of nutrients in citrus trees. Since no cure is known, the infected trees have to be
removed and destroyed. HLB has now emerged as the major threat to the Florida’s $9 billion
citrus industry. As of February 2010, citrus trees in 3122 different sections (square mile) in 34
counties were infected in Florida.4 Growers urgently need diagnostic tools for early detection,
because infected trees may not show symptoms for months or years, during which they are con-
tagious. Current molecular diagnostic tests do not detect the disease soon enough to stop its
spread. These methods proved inadequate, and many growers are not replanting, because
young, vigorous trees attract psyllids. As the bacteria moves within the tree, the entire canopy
progressively develops a yellow color as shown in Fig. 1. The most characteristic symptoms of
citrus greening are a blotchy leaf mottle and vein yellowing that develop on leaves attached to
shoots showing the overall yellow appearance. On Mandarin oranges, fruit may develop an
uneven ripening such that they appear half orange and half green on the shaded side. This symp-
tom is the origin of the common name “greening.”

Culturing and sequencing the genome of the greening pathogen and the host would facilitate stu-
dies of interactions between the host, the bacteria, and the insect that acts as a carrier or vector of the
disease.5 This would aid in development of diagnostic tools that would enable early detection of
infected trees.Until suchtoolsareavailable,weneedtofindwaysbywhichwecandetectHLBinfected
areas within citrus groves and monitor newly infected areas. A polymerase chain reaction (PCR)
method can be used to confirm infections ofHLB, but the process is expensive and hence not feasible
and economical for larger areas. Moreover, time-consuming and labor-intensive ground-based
inspection methods are not suitable for identifying all individual tree infections over a larger area.

Hyperspectral imaging can provide unique spectral signatures and thus can be used to detect
potentially infected trees over a large area for rapid detection of infected zones, where ground
inspection and management should be focused. This will significantly reduce the cost of survey-
ing, allow for monitoring new areas, and provide faster results. Morris and Muraro6 reported that
the average cost for ground scouting for the citrus greening disease was $90/ac per year in the
2008 to 2009 season in Florida.

Hyperspectral reflectance imaging has been successfully used to identify disease, deficiencies,
and defects in different fruits and vegetables. As an example of a citrus disease detection, a spectral
information divergence-based image classification method provided useful means for detecting
canker lesions on citrus fruit.7 In this study, a significant problem was that greasy spot, insect
damage, and melanose had similar reflectance properties to canker, and the chances for misclas-
sifying these three diseaseswere higher than other kinds of peel conditions. Hyperspectral imaging
has been used to detect disease for other crops such as rice and lettuce. Rice canopy hyperspectral
reflectance has been used to detect bacterial leaf blight (BLB) by establishing spectral models for

Fig. 1 An Huanglongbing infected citrus tree.
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assessing disease severity for future site-specific management.8 Hyperspectral images in the range
from 339 to 1014 nm have been used to detect disease during early stages of lettuce growth.9 It has
been observed that plants under stress induced by a disease, based on the severity of the infection,
tend to absorb more light in the near infrared (NIR) spectrum. For fruit defect detection, the reflec-
tance spectra from the hyperspectral images of apples have been used to find the optimal wave-
lengths to discriminate the defective region from the normal region.10

The overall objective of this study is to develop a method to detect HLB infected areas in
citrus groves using airborne hyperspectral and multispectral imaging which will enable more
rapid detection of potentially infected areas. This, coupled with development of efficient man-
agement plans of these areas, will therefore prevent further spread of the infection.

2 Citrus Grove Site, In-Field Measurements and Ground Truthing

Airborne imagery was acquired twice, once in 2007 and another in 2009, from two different
locations, which are described below. In 2007, only hyperspectral images were taken, while
hyperspectral and multispectral images were taken in 2009.

2.1 Citrus Grove Site: 2007

The citrus grove chosen for this study in 2007 was located in the southern part of Hendry County
in Florida, USA, and spread across 800 hectares (∼1.6 km wide and 5.0 km long). The center
coordinates of this location are 26°23′ 21.41″N and 80°57′ 25.06″W. Ground truthing revealed
that the grove had about 10,000 HLB infected trees and hence made it a suitable candidate for
this study. The ground truthing was based on visual check and done by recording locations of
infected trees using a differential Global Positioning System (DGPS) receiver. The grove con-
tained Valencia and Hamlin oranges.

Reflectance data from ground measurements were obtained for infected and healthy citrus
trees using a portable spectrometer (Fieldspec, ASD Inc.). A total of 21 different measurements
were obtained for both infected and healthy trees. Degree of infection (HLB1, HLB2, or HLB3)
was mentioned in each recording from the infected trees where HLB1 indicated least infection
and HLB3 indicated the highest level of infection. The ground spectrometer recordings spanned
across 350 to 2500 nm with a 3 nm spectral resolution.

2.2 Citrus Grove Site: 2009

The citrus grove chosen for this study in 2009 was located in Collier County in Florida, USA,
and was spread across 77.37 acres. The center coordinates of this location were 26°21′ 12.27″N
and 81°21′ 15.76″W. A multispectral and a hyperspectral image were acquired from both blocks
marked E1 in Fig. 2. The grove contained Valencia oranges.

Fig. 2 Citrus grove site under study (Summerland Grove–Consolidated Citrus Limited
Partnership).
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In-field measurements were obtained from the study site using a portable handheld spectro-
meter (HR-1024, Spectra Vista Corporation, Poughkeepsie, New York) for four different cate-
gories of trees in the grove. The categories were HLB1 (tree canopy infected in some parts),
HLB2 (HLB infected tree in general decline), nutrient deficient (but no HLB infection), and
healthy tree. In 2009, different class definitions were used, since the tree conditions were dif-
ferent than in 2007. The ground spectrometer recordings spanned across 348 to 2300 nm with a
3 nm spectral resolution.

The PCR-based ground truthing for confirming HLB infection was conducted for selected
trees in the study site. The ground truthing was carried out by recording locations of infected
trees using a real-time kinematic (RTK) GPS receiver (HiPer XT, Topcon, Olathe, KS).

3 Airborne Imaging System

3.1 Hyperspectral Imaging System for Images Taken in 2007

Hyperspectral images were obtained using an airborne hyperspectral camera (AISA Eagle, Spec-
tral Imaging Ltd., Finland) which was incorporated with a GPS/inertial measurement unit (IMU).
This push broom sensor acquired imagery over a spectral range of 397.3 to 995.3 nm with 128
bands at an altitude of 1158 m. The spectral resolution was approximately 5 nm, and the spatial
resolution of the imagery was 0.7 m.

All data were radiometrically calibrated to radiance data based on the following steps. First,
the sensor noise was removed by subtracting the mean value of every flight line of the dark data
from the corresponding flight line of the raw data. A separate dark image was acquired for every
raw image (flight line). Then the raw data were calibrated to radiance units using a calibration
file, which was supplied by the manufacturer of the camera (SPECIM). Every spatial and spectral
pixel was multiplied with the corresponding value in the calibration file. The values for each
pixel on the CCD were calculated using an integrating sphere. Then the smile effect (changes in
wavelength over the field of view) was corrected. The radiance unit was equal to
mW∕cm2*str*um. The digital number (DN) in the radiance file had a scale of 1000. The indi-
vidual radiance files were grouped to form mosaic files of different regions. The radiance image
files were converted to reflectance, which accounts for changes in irradiance over time and for
solar position, solar zenith angle, and Sun-Earth distance. The FLAASH model atmospheric
correction method in the hyperspectral imaging software package (ENVI 4.6, ITT VSI, Boulder,
Colorado, USA) was used for this conversion.

The calibrated data were then geo-referenced using the Shuttle Radar Topography Mission
(SRTM) elevation data using ENVI. The final mosaic images were presented in UTM zone 17N
projection with the datum of World Geodetic System (WGS) 84. The accuracy was estimated to
be approximately one to two pixels.

3.2 Hyperspectral and Multispectral Imaging System for Images Taken in 2009

A high-resolution airborne four-camera imaging system11 and a hyperspectral imaging system12

were used for image acquisition in 2009. The multispectral system (XMV-4021 CCD camera,
Illunis LLC, Minnetonka, MN) acquired 12-bit images with 2048 × 2048 pixels in blue (430 to
470 nm), green (530 to 570 nm), red (630 to 670 nm), and NIR (810 to 850 nm) bands.

The CCD-based hyperspectral sensor captured 128-band images covering a spectral range
from 457.2 to 921.7 nm at 3.63 nm intervals. The image swath was 640 pixels, and the radio-
metric resolution was 12 bits.

The multispectral image was acquired at an altitude of 3048 m, while the hyperspectral image
was acquired at 1524 m. Both images were georeferenced to the Universal Transverse Mercator
(UTM) coordinate system with zone 17N projection with the datum of WGS-84 and resampled
to 1 m pixel resolution, which was the pixel size of the geo-referenced RGB image. The images
were not radiometrically calibrated, and the DNs on the imagery were represented using 12-bit
numbers, ranging from 0 to 4095. The specifications of the imaging systems used are summar-
ized in Table 1.
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4 Methods

4.1 Spectral Library Construction from 2007 Images: Reflectance Data

ENVI 4.6 was used for the collection of reflectance data from the pixels of the hyperspectral
images. The mosaic image of the selected grove site for the study was split into 12 blocks
(approximately 60 hectare each), and each block was further divided into 13 sections of
100,000 pixels each. Eight sections within the entire collection of sections were identified
as young trees (shorter trees compared to the rest of the sections). All other sections were clas-
sified into the large tree category (having wider canopy spread).

A total of 52 sections were created which were divided randomly into training (70% or 37
sections) and validation (30% or 15 sections) data sets. The ground truth information for the site
was used as reference for collecting pixels for building the spectral library. A set of pixels from
the training set was collected for each of the 10 classes shown in Table 2. A count of 90 pixels
was collected for each of the major tree pixel classes (‘HLB’ and ‘Healthy’) and 20 pixels each
for the rest of the categories.

4.2 Spectral Library Construction from 2009 Images: Uncalibrated Data

Pixel spectra were collected from both the hyperspectral and the multispectral image correspond-
ing to the locations recorded for each of the categories mentioned in the in-field ground mea-
surements. The pixel spectra for each tree flagged under various categories in the ground
measurement were collected, and there were a total of 49 observations for HLB1 class, 20 obser-
vations for HLB2 class, 24 nutrient deficient, and 11 healthy tree spectra.

Pixel spectra were collected for the trees which were confirmed HLB positive and those
declared healthy based on the PCR results. Using the PCR tests, a total of 30 HLB infected
trees were identified, and their corresponding pixel spectra were collected from the hyperspectral
and multispectral image. A total of 20 infected pixel spectra, 10 pixels each from both the E1
blocks of the citrus grove, formed a training set of the image derived spectral library. The remain-
ing 10 pixels formed a validation set of spectral library against which detection accuracy of the
image analysis would be documented.

Table 1 Specifications of the various imaging systems used.

Specification AISA Eagle Hyperspectral camera Multispectral camera

Sensor type Progressive scan
CCD camera

CCD-interline progressive
scan

CCD-interline progressive
scan

Sensing area (mm) 12.29 8.6 × 6.9 15.2 × 15.2

Pixel size (μm) 12 6.7 × 6.7 7.4 × 7.4

Active pixels (h × v ) 1024 1280 × 1024 2048 × 2048

Pixel depth 12 bit 12 bit 12 bit

Spectral range (nm) 397 − 955 457 − 922 400 − 1000

Spectral resolution (nm) 4.7 3.6 N/A

Spatial resolution (m) 0.7 1.0 0.5

Center wavelength N/A N/A 480 nm (blue), 560 nm (green),
650 nm (red), 830 nm (NIR),
with 10 nm FWHM

Number of spectral bands 128 128 4

Altitude (m) 1158 1524 3048

Kumar et al.: Citrus greening disease detection using aerial hyperspectral : : :

Journal of Applied Remote Sensing 063542-5 Vol. 6, 2012



4.3 Reflectance Data Analysis: 2007 Images

Discriminant analysis was conducted to determine the strength and validity of the classification.
Analysis of variance (ANOVA) using SAS was carried out to extract the significant spectral
bands at which the healthy and diseased pixels could be separated for all categories. The section
images in the training set were used to obtain necessary parameters such as NDVI (normalized
difference vegetation index)13 threshold. NDVI was used to eliminate the nonvegetation pixels
from the images in the training set, which subsequently was used for the spectral angle mapping
(SAM).14 SAM was carried out on a few randomly selected images from the training set using
the spectral subset extracted using ANOVA. The accuracy of results from HLB identification
using SAM analysis was recorded against the ground truth vectors on a pixel match basis.

False positives (healthy trees identified as infected) were a major concern in the results
obtained from this image analysis. A false positive pixel library of 30 samples was built
from the validation set using the image results obtained from the SAM image analysis.
ANOVA was carried out on the reflectance data obtained from the false positive samples
and HLB pixel collection in order to extract spectral bands which could separate the two cate-
gories. The objective for this procedure was to use these spectral bands for image analysis and
observe its effect on the results obtained. Moreover, the results were validated against a tree-
based visual check approach instead of a pixel-based approach. Each large tree canopy usually
formed a 4 × 4 pixel matrix which can be differentiated from each other by a zoom in
visual check.

Various vegetation indices (VIs) and leaf pigment indices were calculated for Healthy and
HLB categories using the reflectance data from ground measurements. The same was calculated
for the data from the image derived spectral library and validated against the results from the
ground data. VIs such as the Red Edge Normalized Difference Vegetation Index (RENDVI),15

Atmospheric Resistant Vegetation Index (ARVI),16 and leaf pigment indices such as the caro-
tenoid reflectance index and anthocyanin reflectance index were used for this study. These are
summarized in Table 3.

The RENDVI (NDVI705) is a modification of the traditional broadband NDVI. It was chosen
since it is intended for use with very high spectral resolution reflectance data, such as from
hyperspectral sensors and for applications such as vegetation stress detection.17 This VI differs
from the NDVI by using bands along the red edge, instead of the main absorption and reflectance
peaks. The ARVI is enhancement to the NDVI that is relatively resistant to atmospheric factors
and was more suitable for the aerial images in this study.

There are three main categories of leaf pigments in plants: chlorophyll, carotenoids, and
anthocyanins. The carotenoid and anthocyanin pigments often appear in higher concentrations

Table 2 Ten different classes used in this study and their description.

Class Description

HLB HLB infected canopy in the row center

HLB_L HLB infected canopy in the west side of a row

HLB_R HLB infected canopy in the east side of a row

Healthy Healthy canopy in the row center

Healthy_L Healthy canopy in the west side of a row

Healthy_R Healthy canopy in the east side of a row

HLB_LY HLB infected canopy of younger trees in the west side of a row

HLB_RY HLB infected canopy of younger trees in the east side of a row

Healthy_LY Healthy canopy of younger trees in the west side of a row

Healthy_RY Healthy canopy of younger trees in the west side of a row
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in vegetation that is less healthy or undergoing stress such as in citrus trees affected with HLB.
The VIs and leaf pigment indices were used to determine suitable threshold values for refining
the pixel collection in the spectral library by eliminating pixels which would have found a place
in the pixel collection due to inaccuracy in ground truthing. This method therefore establishes a
workaround, even if the ground truth data is not accurate. ANOVAwas carried out again for VI
refined true HLB pixels and healthy pixels, in order to extract new significant bands for image
analysis.

The identification of infected trees in the validation set was conducted using the spectral
subset obtained from the significant bands, the image derived spectral library having significant
band information, mixture tuned matched filtering (MTMF), and SAM tools in ENVI. Matlab
(Mathworks) and SAS were used for the statistical data analysis.

4.4 Data Analysis and Pixel Detection: 2009 Images

A total of 20 infected pixel spectra from the spectral library, 10 pixels each from both E1 blocks
of the grove, formed a training set of the image derived spectral library. The remaining 10 pixels
formed a validation set against which detection accuracy of the image analysis would be docu-
mented. Endmember detection algorithms such as SAM, MTMF, and linear spectral unmixing
(LSU) were applied on the hyperspectral and multispectral images.

5 Results and Discussion

In this section, five different detection methods for the HLB disease are presented. The procedure
of each method is explained, and its results are presented and discussed. Since the status of every
tree on the grove is not known, quantizing the false positives (healthy tree identified as infected)
is not possible. This would have provided an even better representation and accuracy of the
results.

5.1 Results from Analysis of Reflectance Data from 2007 Hyperspectral Images

Due to significant variations of pixel characteristics within the imagery, healthy and HLB
infected pixels were further categorized. It was observed that pixels at the canopy edge had
lower reflectance compared to the pixels at the center due to shadow and illumination differ-
ences. It was further observed that spectra obtained from the left canopy edge in the west side
were different from those on the right edge in the east side due to illumination at 4 PM local time.
Figure 3 shows the spectral profiles obtained from an average of 30 pixels collected for each of
the tree pixel categories for large trees. The classes in young trees also followed a similar trend. It
was observed that healthy and HLB classes can be clearly differentiated in the NIR region.

Spectral libraries of 90 pixels each, corresponding to each of the tree pixel endmember classes
for the larger tree category, were built for further study. The same was repeated for the young tree
category with 20 pixels from each of its classes. A discriminant analysis was carried out on the
spectral library to observe how strongly the naturally occurring groups of healthy and HLB
infected pixels can be classified and separated. The confusion matrix obtained as a result of
the analysis is shown in Table 4. Error signifies the degree of misclassification of the pixels.

Table 3 Vegetation indices used to reduce false positives.

Vegetation Index (VI) VI Formula

Anthocyanin Reflectance Index (ARI) (ð1∕ρ550Þ–ð1∕ρ700Þ

Atmospheric Resistant Vegetation Index (ARVI) [½ρNIR − ð2ρRED − ρBLUEÞ�∕½ρNIR þ ð2ρRED − ρBLUEÞ�]

Carotenoid Reflectance Index (CRI) ð1∕ρ510Þ − ð1∕ρ550Þ

Red Edge Normalized Difference Vegetation Index
(RENDVI)

ðρ750 − ρ705Þ∕ðρ750 þ ρ705Þ
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The confusion matrix indicated a significant amount of misclassification, and this was further
confirmed by the occurrence of false positives during MTMF and SAM analyses. In order to
extract the significant bands at which the healthy and diseased pixels could be separated for all
categories, analysis of variance (ANOVA) was carried out on all pixel observations from the
spectral library for both young and large trees. Those bands were selected which had a low
p-value. A p-value lower than 0.05 was evidence against the null hypothesis and suggested
that there was larger and more significant difference between the groups (Healthy and HLB
infected) than within the same hyperspectral band for the observations. Forty-four significant
bands were extracted for the large tree pixels and 36 bands for the young trees. The spectral
bands identified for large trees were 734 to 927 nm, 975, and 980 nm. For the young trees,
the spectral bands were 410 to 432 nm, 440 to 509 nm, 634 to 686 nm, 932, and 951 nm.

5.2 Results from Analysis of Reflectance Data from 2009 Site and Hyperspec-
tral Images

The portable spectrometer readings for all the data points from the citrus grove site are plotted in
Fig. 4, showing the difference in the spectral characteristics of the tree categories classified. The
spectra for HLB1, HLB2, nutrient deficient, and healthy are the average of 49, 20, 24, and 11
spectral measurements, respectively. Both categories of HLB show higher reflectance in the visi-
ble region compared to both nutrient deficient and healthy trees. The data corresponding to the
range of 1800 to 2000 nm were found to be noisy due to low signal levels due to water vapor
absorption, and hence they were removed from the plot.

Fig. 3 Spectral plot of six different classes for the large-tree pixel category.

Table 4 Discriminant analysis on the spectral library, showing the number of pixels in each
category.

Healthy HLB Total Error (%)

Large tree Healthy 53 37 90 41.1

HLB 26 64 90 28.9

Young tree Healthy 14 6 20 30.0

HLB 7 13 20 35.0
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The trees used for ground measurements were marked on the hyperspectral and multispectral
images. The corresponding pixel spectra of these data points from hyperspectral and multispec-
tral images are shown in Fig. 5(a). It can be seen that the DN value for HLB1 is higher than the
Healthy tree category in both the hyperspectral and multispectral images. This is consistent with
spectral plot of in-field reflectance measurements.

Fig. 4 Example of a spectral data analysis from ground measurements. A portable handheld
spectrometer was used to measure in-field reflectance spectra of HLB infected (HLB1 and
HLB2), nutrient deficient trees and healthy canopies. (a) The mean spectra for HLB1, HLB2, nutri-
ent deficient, and healthy are the average of 49, 20, 24, and 11 spectral measurements, respec-
tively. (b) Standard deviation of the measurements.

Kumar et al.: Citrus greening disease detection using aerial hyperspectral : : :

Journal of Applied Remote Sensing 063542-9 Vol. 6, 2012



The PCR test confirmed HLB and Healthy trees from the image sites. The trees correspond-
ing to this ground truthing data were located, and their pixel spectra were plotted for both hyper-
spectral and multispectral images, shown in Fig. 5(b). Figure 5(b) shows a higher DN value for
HLB infected pixels corresponding to their Healthy counterpart. This result is again consistent
with the reflectance measurements using a handheld spectrometer at the grove site. Figure 6
shows that the ratio of HLB infected spectrum to healthy spectrum [of Figs. 4(a), 5(a), and
5(b)] is almost always greater than 1.

5.3 HLB Infected Pixel Detection Using MTMF

Figure 7 shows the results from MTMF18 with an MNF19–21 image. From the validation set of
images taken in 2007, minimum noise fraction (MNF) transform was applied to a spectrally
subset reflectance image [Fig. 7(a)], and then the MNF eigenvalue plot was analyzed. After

Fig. 5 Pixel data analysis from hyperspectral and multispectral images. (a) Spectral plot of HLB
infected (HLB1 and HLB2) and healthy canopies corresponding to trees in ground measurement in
Fig. 4 for hyperspectral image. The spectra for HLB1, HLB2, and Healthy are the average of 49,
20, and 11 pixel spectra, respectively. (b) Spectral plot of PCR test confirmed HLB infected and
Healthy tree pixels in hyperspectral and multispectral images. Each spectrum is an average of 15
observation points.
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the pixel purity index (PPI) function was run on the MNF transform result [Fig. 7(b)], the purest
pixels were clustered [Fig. 7(c)] using the n-D visualizer tool with MNF data that used only the
purest pixels. The purest pixels were saved as a library of pure endmember collection. Then,
three classes of pure endmembers for the vegetation, dark shadow pixels, and soil pixels were
obtained from the scatter plot [Fig. 7(c)]. Figure 7(d) shows the pure endmember pixels projected
as regions of interest indicating vegetation (green), soil (brown), and shadow (magenta) pixels.
The shadow and soil pixels were used to create a mask band for MTMF. The output contains a

Fig. 7 MTMF applied on a large tree section image from 2007 set: (a) MNF transformed hyper-
spectral image, (b) PPI image, (c) pure endmembers selected in n-D scatter plot, (d) pure end-
member pixels projected as regions of interest indicating vegetation (green), soil (brown), and
shadow (magenta) pixels, (e) MF score image, (f) Rule classifier threshold image based on
score and infeasibility, and (g) enlarged subsection of a red box in figure (f).

Fig. 6 Ratio of HLB to Healthy spectrum of Figs. 4(a), 5(a), and 5(b).
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matched filter (MF) score image and an infeasibility image corresponding to each MNF band.
Pixels with high MF score and low infeasibility value indicated a better match to the reference
spectra. It was observed that the PPI masked many of the canopy edge pixels, which was due to
the canopy edge pixels being darker than the rest of the vegetation. These processing steps were
conducted first to filter out nonvegetation pixels from the image, and then to identify HLB
infected pixels based onMF score and infeasibility. Figure 7(f) and 7(g) shows the final detection
results in which crosshairs are ground truthing locations of infected tree canopies and red pixels
are the identified pixels by the algorithm. Figure 7(g) shows six correctly identified HLB
infected trees.

The same method was applied to the hyperspectral images for the east and west grove sites
(E1) in the 2009 images. The MNF transform was applied to the raw image data to create MNF
bands. This segregated valuable spectral information and undesirable noise. Lower MNF bands
contain most of the spectral information, and higher MNF bands can be discarded, as they con-
tain most of the image data noise. The existing image derived spectral library for hyperspectral
images was used by the MTMF on the MNF transformed image to match the HLB infected
endmember spectra as shown in Figs. 8 and 9.

Let us consider the set MTMF_HLB as the collection of pixels detected as HLB infected and
PCR_HLB as the set of all PCR confirmed HLB pixels within the site. The intersection of the
sets PCR_HLB and MTMF_HLB, i.e., MTMF_PCR_HLB would be an estimate of the accuracy
of the MTMF detection method. Table 5 estimates the detection accuracy of MTMF analysis
results. Pixels detected as infected are validated against the PCR confirmed ground truthing data.

5.4 HLB Diseased Pixel Detection Using Spectral Angle Mapping

Figure 10 shows an example procedure for disease detection using the SAM. A reflectance
image from the 2007 validation set images was converted to NDVI image to generate a new
image with only tree canopy pixels. SAM analysis used the existing image derived spectral

Fig. 8 MTMF method applied on E1 (west grove site): (a) MNF RGB image (retains all spectrally
pure pixels), (b) 2D scatter plot of pixels after MTMF is carried out on (a). A low infeasibility and
high MF score indicated a better match to the endmember spectra (HLB pixels) being detected.
These pixels have the color red in the scatter plot, (c) target endmember (HLB pixels) projected on
the MTMF output image as red pixels, (d) the white cross-hair on the enlarged rectangular sub-
section of (c) indicates ground truth location for infected trees.
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libraries using 300 pixels each for both categories (Healthy and HLB infected). Multiple max-
imum spectral angles were used for the SAM algorithm for mapping pixels. A spectral angle of
0.1 radians was used for the entire endmember collection of healthy pixels, and an angle of
0.08 radians for the diseased pixel endmembers gave optimum results for the young tree section.
Table 6 displays the consolidated SAM results. The results were verified with the ground truth
data, and the accuracies ranged from 32% to 65%.

The occurrence of false positives confirms the misclassification observed during the discri-
minant analysis, as there were more false positives in the large tree sections than in the young tree
sections. One of the potential sources of error in the identification process is the inaccuracy of the
ground truthing. A GPS positioning error of one to three meters while recording positions would
result in a shift of one to four pixels, leading to corruption of the endmember image derived
spectral library created for the analysis. Therefore, a buffer of 9 × 9 pixels with a ground
truth location at the center was used to take this pixel error into account. By including a buffer
of four pixels in all directions from the ground truth point, infected trees were identified with a
much better accuracy. The inaccuracy of four pixels corresponds to an estimated error of max-
imum three meters in the ground truth. Accuracies of 72% and 76% were obtained for large and

Fig. 9 MTMF method applied on E1 (east grove site): (a) MNF RGB image which retains all spec-
trally pure pixels, (b) 2D scatter plot of pixels after MTMF is carried out on (a). A low infeasibility
and high MF score indicated a better match to the endmember spectra (HLB pixels) being
detected. These pixels have the color red in the scatter plot, (c) target endmember (HLB pixels)
projected on the MTMF output image as red pixels, (d) the white cross-hairs inside the red box of
(c) indicate ground truth location for infected trees.

Table 5 MTMF accuracy of the 2009 validation hyperspectral image.

Site Imagetype PCR_HLB (pixels) MTMF_PCR_HLB (pixels) Accuracy (%)

E1–West HS 15 11 73.3

E1–East HS 15 12 80.0
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young trees, respectively (Table 6). In Fig. 10(f), the purple discs around the white pluses denote
the buffer region. Any red pixels within this region count as a correct identification. For example,
the two infections at the center were identified, but the one at the bottom was not, because the red
pixels are just outside the purple region.

The identification results are heavily dependent on the quality of the endmember spectra
collected, which in turn depends on the accuracy of the ground truth data. Thus, ground truthing
should be done with a more accurate GPS receiver such as an RTK GPS receiver. This would
definitely yield better results.

The SAM analysis for the images in 2009 used the existing image derived spectral library
created from 30 pixels each for both categories (Healthy and HLB infected), confirmed using
PCR tests. Multiple maximum spectral angles were used for the SAM algorithm for mapping
pixels. A spectral angle of 0.1 radians was used for the entire endmember collection of healthy
pixels. An angle of 0.05 radians was used for the diseased pixel endmembers, and it was found to
give optimum results for both E1 sites in the hyperspectral image. Figure 11 documents the steps
involved in the SAM analysis.

Fig. 10 SAM procedure applied on a large-tree section: (a) original hyperspectral image, (b)
corresponding NDVI image, (c) mask image created using NDVI threshold, (d) SAM result of
the image, (e) Enlarged red box in (d). Green pixel is healthy vegetation, and red pixel was
identified as HLB infected pixels. The white cross-hair indicates ground truth location for infected
trees. (f) Classification using a buffer. The purple region around the white plus signs is the buffer
region.

Table 6 SAM analysis results on the 2007 images from the validation set for both Large and
Young tree sections and its accuracy based on comparison with ground truthing data.

Without buffer With buffer

Tree size
No. of infected pixels
by ground truthing

No. of pixels correctly
identified by SAM

Accuracy
(%)

No. of pixels correctly
identified by SAM

Accuracy
(%)

LARGE 290 166 57.2 210 72.4

YOUNG 142 66 46.4 108 76.0
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The corresponding spectral library for multispectral images was used while carrying out
the SAM analysis on both multispectral image sites. A spectral angle of 0.1 radians was
used for the entire endmember collection of healthy pixels, and an angle of 0.04 radians
was used for the diseased pixel endmembers. This was found to yield optimum results for
both E1 sites in the multispectral image.

Let us consider the set SAM_HLB as the collection of pixels detected as HLB infected and
PCR_HLB as the set of all PCR confirmed HLB pixels within the site. The intersection of these
two sets, SAM_PCR_HLB, would be an estimate of the accuracy of the SAM detection method.
Table 7 estimates the detection accuracy of SAM analysis results. Pixels detected as infected
were validated against the PCR confirmed ground truthing data.

It can be seen from Table 7 that the multispectral images resulted in a better accuracy than the
hyperspectral images. The 2009 images also led to a better performance than the 2007 images
owing to positioning errors for the 2007 images. The multispectral images yielded better results
than the hyperspectral images. While hyperspectral images indeed contain a lot more informa-
tion than multispectral images, the increased dimensionality and redundant information in
adjacent bands of the hyperspectral image sometimes lead to lower accuracy values. Such
instances have been seen in other studies as well, with either no significant improvements
were observed for hyperspectral imagery,22 or individual accuracies for particular classes
was higher,23 or the overall accuracy itself was greater.24

The increase in HLB identification efficiency with a buffer is expected, and similar results
were observed for the 2009 images as well. Section 5.7 discusses the case where the buffer spans
the canopy of the corresponding tree (‘tree-based’ classification). Similar increase in accuracy
was observed.

Fig. 11 SAM procedure applied on E1 (west grove site): (a) original hyperspectral color infrared
(CIR) image, (b) SAM result. Green pixel is healthy vegetation, and red pixel was identified as HLB
infected pixels, (c) zoomed-in picture of the red square in (b). The white cross-hair indicates
ground truth location for infected trees.

Table 7 SAM accuracy for the 2009 imagery. HS and MS stand for hyperspectral and multispec-
tral images, respectively.

Site Imagetype PCR_HLB (pixels) SAM_PCR_HLB (pixels) Accuracy (%)

E1-West HS 15 9 60.0

E1-East HS 15 10 66.6

E1-West MS 15 12 80.0

E1-East MS 15 13 86.6
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5.5 HLB Diseased Pixel Detection Using Linear Spectral Unmixing

This analysis was carried out only on the validation image set of 2009. The spectral unmixing
method was applied on both the hyperspectral images for the east and west grove site (E1). The
MNF transform was applied to the raw image data to create MNF bands to obtain spectrally pure
pixels. Spectral unmixing procedure was applied to the MNF data. This technique found the
abundance of the endmember spectra (HLB infected pixels provided as input using the spectral
library) in each reference spectra of the MNF image. Detection of HLB infected pixels was
achieved using a high threshold on the abundance value of the unmixed output pixels, indicating
a better match to endmember spectra as shown in Fig. 12.

Let us consider the set LSU_HLB as the collection of pixels detected as HLB infected. The
intersection of the sets LSU_HLB and PCR_HLB, i.e., LSU_PCR_HLB, would be an estimate
of the accuracy of the LSU detection method. Table 8 estimates the detection accuracy of LSU
analysis results. Pixels detected as infected are validated against the PCR confirmed ground
truthing data. The result of the LSU method applied to E1 grove is shown in Fig. 13.

It was seen that the E1-west site accuracy was lower than the east site for all the above
methods. The E1-west site consisted of 32 rows of trees, out of which only 12 tree rows
could be used for hyperspectral data processing. The other parts of the image were unavailable
due to poor quality and interference of cloud clusters.

Fig. 12 Spectral unmixing method applied to E1 (west grove site): (a) spectral unmixing applied
on MNF transformed image of Fig. 8(a). Red pixels indicate infected trees which were matched
based on high abundance threshold value. (b) The white cross-hair on the enlarged rectangular
subsection of figure (a) indicates ground truth location for infected trees.

Fig. 13 Linear Spectral Unmixing method applied to E1 (east grove site): (a) Spectral unmixing
applied on MNF transformed image of Fig. 9(a). Red pixels indicate infected trees which were
matched based on high abundance threshold value, (b) The black cross-hair on the enlarged
rectangular subsection of figure (a) indicates ground truth location for infected trees.
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Table 8 Linear spectral unmixing (LSU) accuracy for the 2009 validation set images.

Site Imagetype PCR_HLB (pixels) LSU_PCR_HLB (pixels) Accuracy (%)

E1-West HS 15 8 53.3

E1-East HS 15 11 73.3

Table 9 Pixel-based validation of the image after applying false positive reduction.

IMAGEBlock 2 Section4 Number of healthy pixels Number of HLB pixels TOTAL

HEALTHY 94,512 88 94,600

HLB 16 7 (30.0%) 23

Table 10 Tree-based validation of the image after applying false positive reduction.

IMAGEBlock 2 Section4 Number of healthy trees Number of HLB trees TOTAL

HEALTHY 94,512 88 94,600

HLB 8 15 (65.2%) 23

Fig. 14 Vegetation indices and leaf pigment indices calculated on ground observations: (a) atmo-
sphere resistant vegetation index, (b) red edge NDVI, (c) carotenoid reflectance index, and
(d) anthocyanin reflectance index.
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As a result, ground information and PCR results of only the first 12 rows could be utilized in
the spectral library construction. This could explain the variation in the accuracy results in the
west and east grove sites. The accuracy results were strictly based on the intersection of the two
sets, the PCR_HLB and the set of all trees detected as infected by the detection method. The PCR
results are not available for every tree in the grove, as conducting such a comprehensive test on
the grove site would be extremely time-consuming and costly. Having more positive PCR results
increases the size of the set PCR_HLB which would provide a better estimate of the accuracy,
since the intersection of the two sets is bound to increase or decrease based on the performance of
the method.

Since the status of every tree on the grove was not known, quantizing the false positives
(healthy tree identified as infected) was not possible. This would have provided an even better
representation and accuracy of the results.

5.6 Reduction of False Positives from Results: 2007 Images

A false positive pixel collection of 30 samples was built from the validation set using the image
results obtained from the SAM image analysis. ANOVAwas carried out on the reflectance data
obtained from the false positive samples and HLB pixel collection to extract bands which could
separate the two categories. Based on the ANOVA results, 11 significant bands were extracted,
which could separate the two categories of ‘true HLB’ and ‘false HLB’ (false positives). Those
identified spectral bands were 864.45, 874.11 to 888.61, 898.28, 903.11, 912.79 to 922.50, and
975.88 nm. The SAM method was applied to a selected image using the above spectral library.
The detection accuracy was calculated using two approaches, i.e., a pixel-based (Table 9) and a
tree-based validation approach (Table 10). The tree-based approach was adapted for a more

Fig. 15 Vegetation indices and leaf pigment indices calculated from the spectral library: (a) atmo-
sphere resistant vegetation index, (b) red edge NDVI, (c) carotenoid reflectance index, and
(d) anthocyanin reflectance index.
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realistic documentation of the accuracy of the results, since a tree is determined to be infected if
its canopy (pixels) is infected. With the tree-based detection, the detection accuracy increased
from 30% to 65% for a given image, as shown in Tables 7 and 8.

5.7 Improving Spectral Library Using Vegetation and Leaf Pigment Indices

The chosen VIs and leaf pigment indices were calculated using observations from ground mea-
surements and spectral library for each of the categories of HLB infected and healthy trees. The
results of the VIs for the various samples (Figs. 14 and 15) and their magnitude range for dif-
ferent categories were observed. The vegetation indices and leaf pigment indices were able to
separate the Healthy and the HLB infected observation points.

Based on the above indices, thresholds for each index between Healthy and HLB pixels were
determined and then used to refine the spectral library, which eventually contained only true
HLB pixels and true Healthy pixels. Because DN was used to calculate the indices rather
than the reflectance, the value of the different indices is different from the expected range of
values.

ANOVAwas carried out on the refined spectral library. Based on the p-value in the ANOVA
with a 95% significance level, 28 significant bands were extracted and a new spectral library was
constructed using these bands. Table 11 shows the SAM results using the above spectral library.
When the results were compared between Tables 8 and 9, the detection accuracy increased from
65.2% to 78.6%, indicating the great potential of utilizing the vegetation and leaf pigment indices
in order to refine the results of the other methods such as SAM.

6 Conclusion

Hyperspectral imagery, observations from ground measurements, image derived spectral library,
MTMF, spectral angle mapping (SAM), and LSU methods in the imaging software (ENVI) were
used to detect areas of HLB infection. For the images from 2007, the n-D scatter plot used for the
MTMF analysis indicated that not all pixels were identified as a part of a pure endmember class.
Not all vegetation pixels were spectrally pure, and pixel values varied from the left side to the
right side of a tree row across a canopy. Moreover, due to the similarity in the spectra of Healthy
and HLB infected tree pixels at the canopy edge, results from the MTMF and SAM analyses
yielded false positives, i.e., healthy pixels identified as infected. An overall accuracy of approxi-
mately 60% was observed using SAM. There is a clear possibility of inaccuracy of ground truth-
ing data because of geo-referencing error. Moreover, the airborne hyperspectral images only
guaranteed a position accuracy of one to two pixels. Better atmospheric correction methods
for taking care of illumination variance and normalization of canopy edge pixels would help
in yielding better results. More accurate ground truth information would further help in validat-
ing the results.

For the site selected in 2009, polymerase chain reaction (PCR) test-based ground truthing of
selected trees in the area had been carried out to determine the status of these trees and classify-
ing them into healthy or infected. These observations were used for spectral library construction
as well as validation and accuracy estimation of the results. Ground measurements with a hand-
held spectrometer were also obtained for Healthy and HLB infected citrus trees from the same
grove site along with their degrees of infection. This was used as an alternative to PCR results for
result validation. A fairly high detection accuracy of 80% was achieved using MTMF on hyper-
spectral image of the E1-east site. SAMwith multispectral images also gave a very high accuracy

Table 11 SAM results using the spectral library refined by the VI results.

IMAGEBlock 2 Section4 Number of healthy pixels Number of HLB pixels TOTAL

HEALTHY 94,524 76 94,600

HLB 5 18 (78.6%) 23
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rate of 87%. The E1-west site observed lower detection accuracy compared to the east site. This
was due to the fact that the hyperspectral image was cropped due to poor quality, and hence all
ground measurements for this site could not be utilized, as all tree rows were not available for
hyperspectral image processing. The multispectral images yielded better detection results than
the hyperspectral images. A better estimate of accuracy can be achieved with more PCR results
and a more comprehensive ground survey. This would help in the quantization of false positives
in the results.
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